Addition

Written Methods	Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs	Add and subtract two two-digit numbers using concrete objects, pictorial representations progressing to formal written methods $\begin{array}{r} 46 \\ +\frac{27}{73} \\ \hline 1 \end{array}$	Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction $\begin{array}{r} 423 \\ +\quad 88 \\ \hline 511 \\ \hline 11 \end{array}$	Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition where appropriate $\begin{array}{r} 2458 \\ +\quad 596 \\ \hline 3054 \\ \hline 111 \end{array}$	Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) $\begin{array}{r} 23454 \\ +\quad 596 \\ \hline 24050 \\ \hline 111 \end{array}$	Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
Developing conceptual understanding	Use bonds of 10 to calculate bonds of 20 0000010000 Count all Count on Count on, on number track, in 1s	Number track / Number line - jumps of 1 then efficient jumps using number bonds $18+5=23$ $46+27=73$ Count in tens then bridge. $25+29$ by +30 then -1 (Round and adjust) Partition and recombine		Place Value Counters 2458 + 596 Combine the 1 s . Exchange ten 1s for a 10 counter. Combine the 10 s . Exchange ten 10s for a 100 counter. Combine the 100s. Exchange ten 100s for a 1000 counter Read final answer Three thousand and fifty-four.		
With jottings ... or in your head	Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$	Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers	Add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds	Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	Add and subtract numbers mentally with increasingly large numbers	Perform mental calculations, including with mixed operations and large numbers
Just know it!	Represent \& use number bonds and related subtraction facts within 20 Add and subtract one-digit and twodigit numbers to 20 , including zero	Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100				
Year	1	2	3	4	5	6
Foundations	1 more	10 more Number bonds: 20, 12, 13	Add multiples of 10, 100	Add multiples of 10s, 100s, 1000s	Add multiples of $10 \mathrm{~s}, 100 \mathrm{~s}$, 1000s, tenths,	Add multiples of $10 \mathrm{~s}, 100 \mathrm{~s}, 1000 \mathrm{~s}$, tenths, hundredths
	Number bonds: 5, 6	Number bonds: 14,15 Add 1 digit to 2 digit by bridging.	Add single digit bridging through boundaries	Fluency of 2 digit +2 digit	Fluency of 2 digit +2 digit including with decimals	Fluency of 2 digit +2 digit including with decimals
	Largest number first. Number bonds: 7, 8	Partition second number, add tens then ones	Partition second number to add Pairs of 100	Partition second number to add Decimal pairs of 10 and 1	Parrition second number to add	Partition second number to add
	Add 10 . Number bonds: 9,10	Add 10 and multiples. Number bonds: 16 and 17	Use near doubles to add	Use near doubles to add	Use number facts, bridging and place value	Use number facts, bridging and place value
	Ten plus ones. Doubles up to 10	Doubles up to 20 and multiples of 5 Add near multiples of 10	Add near multiples of 10 and 100 by rounding and adjusting	Adjust both numbers before adding Add near multiples	Adjust numbers to add	Adjust numbers to add
	Use number bonds of 10 to derive bonds of 11	Number bonds: 18, 19 Partition and recombine	Partition and recombine	Partition and recombine	Partition and recombine	Partition and recombine

Subtraction

Multiplication

Division

Written Methods		Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs	Write and calculate mathematical statements for \div using the x tables they know progressing to formal written methods.		Divide numbers up to 4 digits by a one-digit $\quad 194 \div 6$ number using the formal written method of short $6 \longdiv { 3 \quad 2 }$ division and interpret remainders $\quad 192 \div 6$ appropriately for the $=32$ context	Divide numbers up to 4-digits by a two-digit whole number using the formal written method of short division where appropriate for the context $\begin{array}{ll} 564 \div 13 & \begin{array}{l} \text { Known multiplication facts: } \\ 13,26,39,52,65, \ldots \\ 10 \times 13=130,20 \times 13=260 \end{array} \\ 1 3 \longdiv { 5 6 4 4 } \end{array}$
Developing conceptual understanding	$6 \div 2=3$ by sharing into 2 groups and by grabbing groups of 2 How many 2s?	$15 \div 3=5$ in each group (sharing) Link to fractions $15 \div 3=5$ groups of 3 (grouping) - $10 \div 2=5$ Use language of division linked to tables \square How many 2s?	Grouping using partitioning $43 \div 3$ If I know $10 \times 3 \ldots$ Use language of division linked to tables \square How many 3s?	Grouping using partitioning $196 \div 6$ If I know $3 \times 6 \ldots$ then $30 \times 6 \ldots$ 'Chunking up' on a number line $196 \div 6=32$ r 4 Use language of division linked to tables. \square	$192 \div 6$ using place value counters to support written method Exchange one 100 for ten 10s 19 tens into groups of 6 3 groups so that is 30×6, exchange remaining 10 for ten 1 s So $192 \div 6=32$	$564 \div 13=43 \text { r } 5=43 \frac{5}{13}$ Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
With jottings ... or in your head	Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental methods	Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers Recognise and use factor pairs and commutativity in mental calculations	Multiply and divide numbers mentally drawing upon known facts Multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000	Perform mental calculations, including with mixed operations and large numbers
Just know it!	Count in multiples of twos, fives and tens	Recall and use x and \div facts for the 2, 5 and $10 \times$ tables, including recognising odd and even numbers.	Recall and use x and \div facts for the 3 , 4 and 8 times tables	Recall x and \div facts for x tables up to 12×12.	Recall prime numbers up to 19 know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers	
Year	1	2	3	4	5	6
Foundations	Count back in 2 s	Division facts ($2 \times$ table)	Review division facts (2x, 5x, 10x table)	Division facts ($4 \mathrm{x}, 8 \mathrm{x}$ tables) 10 times smaller	Division facts ($4 \mathrm{x}, 8 \mathrm{x}$ tables) 100,1000 times smaller	Division facts (up to 12×12)
	Count back in 10s	Division facts ($10 \times$ table)	Division facts ($4 \times$ table)	Division facts ($3 \mathrm{x}, 6 \mathrm{x}, 12 \mathrm{x}$ tables)	Division facts ($3 x, 6 x, 12 x$ tables) Partition to divide mentally	Partition to divide mentally
	Halves up to 10	Halves up to 20	Halve two digit numbers	Halve larger numbers and decimals	Halve larger numbers and decimals	Halve larger numbers and decimals
	Count back in 5 s	Division facts ($5 \times$ table)	Division facts ($8 \times \mathrm{table}$)	Division facts (3x, 9x tables)	Division facts ($3 \mathrm{x}, 9 \mathrm{x}$ tables) 100,1000 times smaller	Division facts (up to 12×12)
	Halve multiples of 10	Count back in 3 s	Division facts ($3 \times$ table)	Division facts (11x, 7x tables)	Review division facts (11x, 7x tables) Partition decimals to divide mentally	Partition to divide mentally
	How many 2s? 5s? 10s?	Review division facts ($2 \mathrm{x}, 5 \mathrm{x}, 10 \mathrm{x}$ table)	Division facts ($6 \times$ table) or review others	Division facts ($6 \mathrm{x}, 12 \mathrm{x}$ tables)	Review division facts ($6 x, 12 x$ tables) Halve larger numbers and decimals	Halve larger numbers and decimals

Expectations of Calculation in Year 6

	Decomposition Using a number line: 74-27 = 47
OK AT THE NUMBERS - can you solve it in your head, with jotings or using writen method?	
Long multiplication $\begin{array}{r} 5172 \times 38 \\ 5172 \\ \times 38 \\ \hline 155160 \\ +\quad 41376 \\ \hline 196536 \\ \hline \end{array}$ Using known multiplication facts: $43 \times 6=(40 \times 6)+(3 \times 6)=258$	

