Match the name to the 3D shape.

Match the name to the 3D shape.

Varied Fluency 1

True or false?

A triangular based pyramid has 4 vertices.

Varied Fluency 1

True or false?

A triangular

 based pyramid has 4 vertices.True

Varied Fluency 2

Tick the statements which relate to the shape.

Varied Fluency 2

Tick the statements which relate to the shape.

Circle the shapes that have more than 5 edges.

square

cone

based
pyramid

cuboid

Varied Fluency 3

Circle the shapes that have more than 5 edges.

Varied Fluency 4

Use $>,<$ or $=$ to complete the statements below.
number of edges in a cuboid
number of vertices in a square based pyramid

number of faces in a triangular prism
number of faces in a cube

Varied Fluency 4

Use $>,<$ or $=$ to complete the statements below.
number of edges in a cuboid
(12)
number of vertices in a square based pyramid (5)
number of faces in a triangular prism (5)

number of faces in a cube
(6)

Problem Solving 1

Are the following statements always true, sometimes true or never true?
A) A square based pyramid has 4 vertices.
B) A cylinder has more curved edges than a cone.

Problem Solving 1

Are the following statements always true, sometimes true or never true?
A) A square based pyramid has 4 vertices.

Never true
B) A cylinder has more curved edges than a cone.

Always true

Reasoning 1

Which shape is the odd one out?

Explain your answer.

Reasoning 1

Which shape is the odd one out?

Explain your answer.

Various possible answers, for example: The cuboid is the odd one out because a cylinder and sphere have a curved surface whereas a cuboid has only flat faces.

Problem Solving 2

Use the cards below to make as many correct statements as you can.

1. The number of edges in a cube.
2. The number of edges in a square based pyramid.
3. The number of vertices in a cube.
4. The number of edges in a cuboid.

Problem Solving 2

Use the cards below to make as many correct statements as you can.

1. The number of edges in a cube.
2. The number of edges in a square based pyramid.
3. The number of vertices in a cube.

$$
\begin{aligned}
& 4=1 \\
& 3=2
\end{aligned}
$$

4. The number of edges in a cuboid.
