Reasoning and Problem Solving Kilograms and Kilometres

Reasoning and Problem Solving Kilograms and Kilometres

Developing

1b. $40,000 \mathrm{~m}, 10,000 \mathrm{~m}$
$2 \mathrm{~b} .2 \mathrm{~kg}=2,000 \mathrm{~g}, 5,000 \mathrm{~g}>2 \mathrm{~kg}$,
$5,000 \mathrm{~g}>2,000 \mathrm{~g}$
3b. Jack is not correct. $4 \times 500 \mathrm{~g}=2,000 \mathrm{~g}$.
$2,000 \mathrm{~g}$ is equivalentto $2 \mathrm{~kg} .2 \times £ 3=£ 6$ so 4 bunches of bananas would cost $£ 6.00$

Expected

4b. First row: 0.5 kg
Second row: 2.5 kg
Third row: 2.3 kg
5b. Various possible answers, for example: $3.9 \mathrm{~kg}>3.3 \mathrm{~kg}, 3.3 \mathrm{~kg}<3,500 \mathrm{~g}$,
$3,500<3.9 \mathrm{~kg}$.
6b. Ewan is not correct.
$3 \times 500 \mathrm{~g}=1,500 \mathrm{~g}$, which is equivalent to 1.5 kg . $1.5 \times £ 2.80=£ 4.20$.

Greater Depth

7b. First row: 4.74 kg
Second row: 2.31 kg
Third row: 6.15 kg
8b. Various possible answers, for example:
$3.7 \mathrm{~kg}>3.07 \mathrm{~kg}, 3.7 \mathrm{~kg}>3,007 \mathrm{~g}, 3.07 \mathrm{~kg}>$ $3,007 \mathrm{~g}$
9b. Harrison is not correct.
10 pears would weigh $10 \times 252 \mathrm{~g}=2,520 \mathrm{~g}$, which is equivalent to 2.52 kg .2 .5 kg would cost $2.5 \times £ 1.90=£ 4.75$ so 2.52 kg would cost more than £4.75.

